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Abstract 
 
Genetic map based quantitative trait loci (QTL) analysis is the main method for pear fruit traits research. To accelerate 
molecular breeding of fruit traits in pear, we analyzed QTL of ten pear fruit traits based on genetic map constructed in 2017. A 
total of 90 fruiting-age F1 seedlings derived from Pyrus communis (L.) ‘Red Clapp’s Favorite’ × Pyrus pyrifolia Nakai 
‘Mansoo’ were used for QTL analysis. Candidate genes were screened in the regions of the pear genome sequence 
corresponding to the QTL. The study identified 56, 421, 139, 64, 59, 37 and 66 candidate genes related to single fruit weight, 
skin color, fruit core size, fruit diameter, soluble solid content, flesh firmness, and fruit length, respectively, from the pear 
genome database. Based on the high-density genetic map, ten QTL for the ten traits were identified. The QTL were located on 
linkage group 11 (LG 11), LG 3, LG 5 and LG 12, respectively. Genetic map based QTL analysis is the primary method for 
pear fruit traits research. Candidate genes were screened, the fruit traits of F1 population were measured and ten QTL for the 
10 traits were detected. © 2020 Friends Science Publishers 

 

Keywords: Candidate gene; Molecular marker; Phenotypic traits; QTL 

 

Introduction 
 

Phenotypic selection is the main method used for traditional 

pear breeding. It cannot be carried out until the individual 

seedlings have completed the long juvenile phase necessary 

before the plants can fruit. During this period, a large area of 

cultivated land will be occupied by those individual 

seedlings exhibiting undesirable fruit traits. In addition, 

quantitative fruit traits are markedly affected by 

environmental conditions. Such observations contribute to 

the problems associated with phenotypic selection. 

Genotypic selection could identify the seedlings with the 

desirable traits based on the relationship between genotype 

and phenotype. Genotypic selection is carried out through 

the use of molecular markers, linked to specific traits, and 

mainly involving quantitative trait locus (QTL) 

identification. Thus, QTL identification of fruit quality traits 

is an important aspect of molecular pear breeding. 

QTL for apple agronomic traits, such as disease 

resistance, insect resistance and dwarfing traits, and fruit 

quality traits have been mapped onto the apple genome, 

including resistance to fire blight (Erwinia amylovora) 

(Nybom et al. 2012), powdery mildew (Podosphaera 

leucotricha) (Jensen et al. 2014), apple scab (Venturia 

inaequalis) (Soriano et al. 2014; Franceschi et al. 2016), 

woolly apple aphid (Eriosoma lanigerum) (Jensen et al. 

2014) and rosy apple aphid (Dysaphis plantaginea) 

(Pagliarani et al. 2016), as well as fruit quality traits such as 

fruit firmness (Chagné et al. 2014), and titratable acidity 

(Xu et al. 2012). Sun et al. (2015) detected 12 apple QTL 

related to fruit firmness, fruit weight, FA, and sugar content, 

which were mapped to LG 7. 

QTL location with respect to pear agronomic traits has 

been mainly focused on resistance to diseases such as fire 

blight, pear scab (Venturia pyrina), and black spot (Fabraea 

maculata) (Iketani et al. 2001; Dondini et al. 2005; 

Pierantoni et al. 2007; Terakami et al. 2007; Won et al. 

2014; Perchepied et al. 2015; Terakami et al. 2016). The 

study of fruit quality trait QTL in pear has not been as 

detailed as in apple because of the relative lack of research 

on the former crop. Iketani et al. (2001) constructed a 

genetic map of 82 F1 individuals, using QTL identified by 

random amplified polymorphic DNA markers, and 

identified resistance alleles for pear scab and susceptibility 

alleles for black spot in different linkage groups in 

‘Kinchaku’. The research into QTL analysis of pear fruit 

traits started in 2014, including traits such as fruit firmness, 

fruit color, fruit ripening date, fruit friction discoloration, 

and juice content (Wu et al. 2014; Yamamoto et al. 2014). 

Yao et al. (2017) and Xue et al. (2017) identified a red skin 

color QTL on LG 5. To date, QTL research into pear fruit 

traits has been insufficient to develop sufficient molecular 
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markers to improve selection efficiency in pear breeding. To 

achieve this purpose, it still need to identify new QTL of 

pear fruit traits by using different hybrid crosses among 

different pear cultivars. 

The aim of the present study was to evaluate the ten 

main fruit quality traits (single fruit weight, fruit diameter, 

fruit length, fruit core size, flesh firmness, soluble solid 

content, skin color, fruit glucose content, fruit sorbitol 

content, and fruit malic acid content) and to identify the 

associated QTL that hadn’t been reported before, in a 

population of 90 F1 individuals from the ‘Red Clapp’s 

Favorite’ (Pyrus communis L.) × ‘Mansoo’ (Pyrus pyrifolia) 

cross. The QTL associated with the ten fruit traits were 

identified based on a genetic map constructed in 2017 

(Wang et al. 2017). The study offers some important 

insights into map-based cloning of pear genes and marker-

assisting breeding for improved fruit quality of pear in the 

future. 

 

Materials and Methods 
 

Plant material 

 

An F1 population, consisting of 90 fruiting individuals 

derived from the cross between ‘Red Clapp’s Favorite’ (P. 

communis) and ‘Mansoo’ (P. pyrifolia), was used for QTL 

identification. ‘Red Clapp’s Favorite’ was the maternal 

parent and is a bud mutant of the European pear ‘Clapp’s 

Favorite’, selected in the US; ‘Mansoo’ was the male parent 

and was bred in the Republic of Korea. Hybridization was 

carried out in 2010, and F1 plants were grown at the Zhengzhou 

Fruit Research Institute, Chinese Academy of Agricultural 

Sciences in Henan Province, China (34° N, 113° E). 

 

Candidate gene searching in silico 

 

The regions associated with the QTL on the physical map 

were identified by mapping the correlative markers. The 

genes within the QTL regions, together with the functional 

annotation information, were available on the P. × 

bretschneideri genome website 

(http://peargenome.njau.edu.cn). The candidate genes 

associated with a specific pear fruit trait were predicted 

based on their biological functions. 

 

Pear fruit quality evaluation 

 

The fruit traits single fruit weight, fruit diameter, fruit length, 

fruit core size, flesh firmness, soluble solid content, skin 

color, fruit glucose content, fruit sorbitol content, and fruit 

malic acid content were measured in all F1 individuals in 

2016, and the skewness and kurtosis values for the ten fruit 

traits were analyzed by S.P.S.S. (IBM, Armonk, NY, USA). 

Five ripe fruits were randomly collected from each F1 

individual. Fruit length and fruit diameter were measured 

using Vernier calipers, single fruit weight was determined as 

the average weight of the five fruits, flesh firmness was 

determined using the fruit hardness tester GY-4 (TOP 

Instrument Company, Zhejiang, China), soluble solid 

content was determined using a PAL-1 refractometer 

(ATAGO, Tokyo, Japan), and skin color was classified into 

one of six levels according to the coloration (red) area on 

the surface of the ripe fruit (Table 1). 

Fruit glucose content, fruit sorbitol content, and fruit 

malic acid content were determined using the liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) 

method (Yuan et al. 2017). Methanol, acetonitrile, and 

ethanol were purchased from Merck (Darmstadt, Germany). 

Standards were purchased from BioBioPha (Yunnan, China) 

and Sigma-Aldrich (Saint Louis, MO, USA), and were 

dissolved in methanol and stored at -20°C for LC-MS/MS 

analysis. Cryopreserved fruit samples were ground at 30 Hz 

for 1 min with an electric grinder (MM400, Retsch, Haan, 

Germany). A sub-sample (100 mg) of powder was extracted 

overnight at 4°C with 1.0 mL 80% (v/v) methanol, and 

vortexed three times to achieve full extraction. After 

centrifugation at 12,000 g for 15 min, the supernatant was 

decanted from the pellet and dried under nitrogen at 35°C, 

then reconstituted with 100 μL 30% (v/v) aqueous methanol 

and vortexed to ensure that it had dissolved fully. The 

solution was centrifuged at 12,000 g for 15 min, after which 

the supernatant was decanted away and stored in a vial at 

4°C for LC-MS/MS analysis. Instrumental systems for LC-

ESI ESI-MS/MS analysis included ultra-performance liquid 

chromatography and tandem mass spectrometry (MS/MS) 

(Applied Biosystems 4500 QTRAP, 

http://www.appliedbiosystems.com.cn/). The 

chromatography conditions included: 1) column: Waters 

(Milford, MA, USA), ACQUITY UPLC HSS T3, C18, 1.8 

µm, 2.1 mm×100 mm; 2) mobile phase: the polar phase was 

ultrapure water containing 0.1% (v/v) formic acid and the 

non-polar phase was acetonitrile containing 0.1% (v/v) 

formic acid; 3) elution gradient: water: acetonitrile 95:5 

(v/v) for 0 min, 5:95 (v/v) for 11.0 min, 5:95 (v/v) for 12.0 

min, 95:5 (v/v) for 12.1 min, and 95:5 (v/v) for 15.0 min; 4) 

flow rate: 0.4 mL/min; 5) column temperature: 40°C; 6) 

injection volume: 5 μL. Eluate was analyzed by mass 

spectrometry. 

 

QTL analysis of pear fruit traits 

 

MapQTL5.0 (Ooijen 2004) was used to analyze QTL. 

Interval mapping (IM) was used to detect the QTL for the 

ten fruit traits. The threshold value was determined for each 

trait by the permutation test with 1000 replications. The 

significant log odds score (LOD) threshold was calculated 

by the permutation test to be 3.5 with the confidence 

interval (P < 0.05), the LOD threshold of 2.5 (Wu et al. 

2014) was used to identify potential QTL, and the region 

with the highest QTL score was considered to be the QTL 

site. MapChart 2.2 software (Voorrips 2002). was used to 

draw the map. 

file:///F:/Dr%20Ahmad/IJAB%20Amin/IJAB/Handling%20Editor%20IJAB/Need%20drastic%20revision/AppData/Local/Temp/AppData/Local/Temp/Program%20Files/Youdao/Dict/7.5.0.0/resultui/dict/result.html%3fkeyword=associated%20with&lang=en
javascript:;
http://www.appliedbiosystems.com.cn/).
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Results 
 

Candidate genes involved in pear fruit quality traits 

 

After aligning the QTL regions with the physical positions 

on the pear genome pseudo-chromosomes in silico, seven 

QTL within a region < 5 cM and with the highest LOD 

score and the highest variance accounted for of a specific 

trait, had their corresponding positions identified to permit 

direct searches for candidate genes. A total of 56 genes 

linked to the QTL associated with single fruit weight were 

obtained from the pear genome database, and we also 

identified 421, 139, 64, 59, 37, and 66 genes related to skin 

color, fruit core size, fruit diameter, soluble solid content, 

flesh firmness, and fruit length, respectively, from the pear 

genome database (Table 4). 

 

Pear fruit quality traits 

 

The fruit traits of the individual F1 seedlings were measured, 

amely fruit length, fruit diameter, fruit core size, single fruit 

weight, flesh firmness, soluble solid content, skin color, fruit 

glucose content, fruit sorbitol content and fruit malic acid 

content (Table 2; Fig. 1a–1j). The distribution of single fruit 

weight was 57.5–569.48 g (mean: 249.43 g), fruit diameter 

was 46.8–103.62 mm (mean: 77.33 mm), fruit length was 

51.21–110.97 mm (mean: 74.89 mm), fruit core size was 

18.27–54.16 mm (mean: 34.22 mm), and flesh firmness was 

9.1–70.4 N/cm
2
 (mean: 39.85 N/cm

2
). soluble solid content 

ranged from 5.1 to 15.5 Brix% (mean: 10.38 Brix%), while 

the skin color score ranged from 1 to 5, the distribution of 

fruit glucose content was 0.84–5.26 μg/g (mean: 2.99 μg/g), 

and fruit sorbitol content and fruit malic acid content were 

0.6–7.07 μg/g (mean: 3.35 μg/g) and 0.18–1.02 μg/g (mean: 

0.42 μg/g), respectively. In addition, statistical analysis 

showed that, for each trait, the absolute values of kurtosis 

and skewness were both less than 2, and the distribution was 

unimodal (Table 2), indicating that each of the traits was 

normally distributed (Fig. 1), and consistent with the typical 

distribution of quantitative character inheritance controlled 

by polygenes. 

 

QTL analysis 

 

Ten external and internal fruit quality traits were selected for 

QTL analysis. Single fruit weight, fruit length, fruit 

diameter, and skin color affect fruit external quality, while 

fruit core size affects the proportion of the fruit which is 

edible, and flesh firmness, soluble solid content, fruit 

glucose content, fruit sorbitol content, and fruit malic acid 

content affect mouth sensation, including sweetness, acidity, 

and texture. Because the ten traits were normally distributed, 

QTL analysis was conducted by interval mapping, using 

MapQTL 5.0 software. Ten significant QTL were detected 

on LG 3 (n=2), LG 5 (1), LG 11 (6), and LG 12 (1). The 

QTL for single fruit weight, fruit diameter, fruit length, 

soluble solid content, fruit glucose content, and fruit malic 

acid content were all located on LG 11, while the QTL for 

flesh firmness and fruit sorbitol content were both mapped 

onto LG 3, and the QTL for SC was localized to LG 5, 

while the QTL for FCS was located on LG 12 (Fig. 2). The 

maximum LOD score, the peak position on the map, the 

interval between the marker and the peak position, the 

nearest marker, and the percentage of the variance in the 

trait explained by the marker for each QTL are all shown in 

Table 3. 

 

Discussion 
 

QTL Mapping in pear is difficult and has rarely been used 

for pear fruit trait research, because pear is a highly 

heterozygous self-incompatible plant, with a long juvenile 

phase (Wu et al. 2013). With the development of sequencing 

technology, high-density linkage maps have started to be 

used for QTL detection in pear. One of the QTL for single 

fruit weight was found on LG BYH8 (Zhang et al. 2012), 

which may correspond to LG 11 in the pear reference map 

(Yamamoto et al. 2007). In the current study, the QTL for 

single fruit weight was detected on LG 11 (Fig. 2), which is 

in accordance with the result of Yamamoto et al. (2007). 

Moreover, the QTL for fruit diameter and fruit length were 

also detected on LG 11 (Fig. 2) and were located in almost 

the same region as that for single fruit weight, suggesting 

that the three traits might be controlled by the same QTL. It 

would be a valuable approach for making a comparison of 

fruit-related QTL between apple and pear because of their 

collinearity for all LGs (Pierantoni et al. 2004; Yamamoto et 

al. 2007). Several QTL related to fruit traits had been 

reported in apple (Liebhard et al. 2003; Kenis et al. 2008; 

Longhi et al. 2012; Kunihisa et al. 2014). Potts et al. (2014) 

found QTL for single fruit weight, fruit length and fruit 

diameter on both LG 3 and LG 5 of apple (with similar 

results in both years of the study); it would be interesting to 

determine whether the QTL correspond to those identified in 

our study because of the homologous regions of 

chromosome 3 and chromosome 11 (Wu et al. 2014). Chang 

et al. (2014) also detected two QTL related to single fruit 

weight on LGs 11 and 5 in apple. All the above findings for 

apple and pear indicated that the QTL for single fruit weight, 

fruit length, and fruit diameter were most possibly located on 

LG 11 and were common to apple and pear.  

The identification of candidate genes based on QTL 

has become a widespread practice in current breeding 

Table 1: The classified levels of skin color 

 
Score Coloration (red) area (%) 

0 0 (Skin color was green or russet) 

1 < 20 

2 21-40 
3 41-60 

4 61-80 

5 81-100 

 

http://dict.cn/exterior%20quality
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programs (Yang et al. 2012; Chagné et al. 2014; Bastiaanse 

et al. 2016). The candidate gene linked to a specific trait 

could be used in marker-assisted selection. For example, 

PG1 and ACO1 were associated with the QTL for fruit 

firmness located on LG 10 in apple (Longhi et al. 2012; 

Chagné et al. 2014). Another gene, LAR1, expressed in 

apple fruit, was linked to QTL for polyphenolic composition 

mapping to LG 16 (Chagné et al. 2012). In the current 

study, candidate genes were selected in QTL regions 

associated with seven fruit traits. It would be interesting in 

the future to study these candidate genes in breeding 

projects. The red color of pear fruit is particularly appealing 

to consumers and the market. The determination of color in 

fruit is due mostly to the anthocyanin group of flavonoids, 

which are controlled by both genetic and environmental 

conditions. Previous studies reported that the anthocyanin 

biosynthetic pathway might be regulated by the MYB 

transcription factor family, as MYB1 and MYB10 were 

believed to be important transcription factors for red 

pigmentation in the skin and flesh in apple, respectively 

(Takos et al. 2006; Espley et al. 2007). In the present study, 

we detected one QTL for skin color on LG 5 (Fig. 2). 

Dondini et al. (2008) found one QTL for skin color on LG 

4, using the F1 population from a cross between the two pear 

cultivars ‘Abbé Fétel’ and ‘Max Red Bartlett’, while Wu et 

al. (2014) detected four QTL for fruit skin color on LG 4 

(n=1), LG 13 (1), and LG 16 (2) of pear. Yao et al. (2017)  

also found a skin color QTL on LG 5 of Chinese pear, and 

screened candidate genes surrounding the LOD peak region 

(scaffold97.0, 741019bp; scaffold97.0 502339bp), 

identifying 84 genes in total, from which the PyMYB114 

gene was selected to be responsible for the red skin color 

Table 2: Statistics of fruit traits in F1 population 
 

Trait Mean SD Variation Kurtosis Skewness Minimum Maximum Range 

Fruit length (mm) 74.89 11.674 0.17 -0.347 0.225 51.21 110.97 59.76 
Fruit diameter (mm) 77.33 10.375 0.15 -0.316 0.084 46.80 103.62 56.82 

Fruit core size (mm) 34.22 5.448 0.19 0.517 0.135 18.27 54.16 35.89 

Single fruit weight (g) 249.43 99.88 0.43 -0.063 0.726 57.50 569.48 511.98 
Flesh firmness (N/cm2) 39.85 16.675 0.35 0.109 -0.169 9.10 70.40 61.20 

Soluble solid content (%) 10.38 2.661 0.16 1.744 -0.083 5.10 15.50 10.40 

Skin colour 0.75 1.039 1.23 -0.665 0.509 0.00 4.00 3.00 
Fruit glucose content (μg/g) 2.99 0.899 0.30 -0.062 0.204 0.84 5.26 4.42 

Fruit sorbitol content (μg/g) 3.35 1.119 0.33 0.762 0.367 0.60 7.07 6.47 

Fruit malic acid content  (μg/g) 0.42 0.18 0.43 1.603 1.302 0.18 1.02 0.80 
 

Table 3: QTLs analysis of ten fruit quality traits using interval mapping 
 

Fruit Quality Trait LOD Peak position (cM) Linkage group Nearest Marker Distance (cM) % Exp 

Single ftuit weight 7.03 65.95 11 Marker360922 1 28.6 

Fruit diameter 5.6 67.50 
68.12 

68.75 

11 Marker356146 
Marker356147 

NAUpy24v 

0 23.1 

Fruit length 5.92 65.95 11 Marker360922 1 25 
Fruit core size 3.2 141.59 12 Marker76172 0 14.1 

Skin colour 16.83 31.88 5 Marker30575 0 56.2 

Flesh firmness 3.95 102.64 3 Marker186745 0 17.3 
Soluble solid content 6.47 94.48 11 Marker227159 1.55 27.1 

Fruit glucose content 5.36 28.64 11 Marker137219 1 27.6 

Fruit malic acid content 3.03 5.21 11 Marker155408 1 15.2 
 Fruit sorbitol content 5.41 102.64 3 Marker186745 0 25.1 
Note: % Exp = % of the variance explained by the marker 

 

Table 4: The geneid associated with fruit traits 
 

Fruit traits The geneid associated with fruit traits 

Single fruit weight Pbr008131.1 Pbr029588.1 Pbr038262.1 Pbr029567.1 Pbr029576.1 Pbr038287.1 Pbr038257.1 Pbr029582.1 Pbr028416.1 
Pbr017924.1 Pbr030387.1 Pbr038263.1 Pbr029568.1 Pbr029577.1 Pbr038288.1 Pbr038258.1 Pbr029583.1 Pbr029395.1 

Pbr017926.1 Pbr030393.1 Pbr038264.1 Pbr029569.1 Pbr029578.1 Pbr038289.1 Pbr038259.2 Pbr029584.1 Pbr029562.1 

Skin colour Pbr000399.1 Pbr000453.1 Pbr000448.1 Pbr000446.1 Pbr000574.1 Pbr042074.1 Pbr002528.1 Pbr002535.1 Pbr000447.1 
Pbr000405.1 Pbr000572.1 Pbr000472.1 Pbr000536.1 Pbr000503.1 Pbr042080.1 Pbr002481.1 Pbr002548.1 Pbr000573.1 

Pbr000404.1 Pbr000568.1 Pbr000481.1 Pbr000571.1 Pbr000473.1 Pbr042076.1 Pbr002492.1 Pbr002544.1 Pbr000520.1 

Fruit core size Pbr000255.1 Pbr000327.1 Pbr000283.1 Pbr000296.1 Pbr000265.1 Pbr000281.1 Pbr014618.1 Pbr014626.1 Pbr000309.1 
Pbr000300.1 Pbr000332.1 Pbr000302.1 Pbr000259.1 Pbr000292.1 Pbr000267.1 Pbr014634.1 Pbr014607.1 Pbr000303.1 

Pbr000289.1 Pbr000301.1 Pbr000276.2 Pbr000321.4 Pbr000320.1 Pbr000310.1 Pbr014637.1 Pbr014600.1 Pbr000263.1 

Pbr000318.1 Pbr000272.1 Pbr000294.2 Pbr000278.1 Pbr000322.1 Pbr000257.1 Pbr014636.1 Pbr014602.1 Pbr000270.1 
Flesh firmness Pbr032925.1 Pbr032941.1 Pbr032949.1 Pbr032954.4 Pbr032912.1 Pbr032940.1 Pbr032922.1 Pbr032910.1 Pbr032923.1 

Pbr017419.1 Pbr039775.1 Pbr039785.1 Pbr039788.1 Pbr039794.1 Pbr039792.1 Pbr039798.1 Pbr039786.1 Pbr039776.1 

Pbr039707.1 Pbr039777.1 Pbr039774.1 Pbr039781.1 Pbr039803.1 Pbr039799.1 Pbr039801.1 Pbr039806.1 Pbr039790.1 
Note: Data were not all shown 
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Fig. 1: Distribution of fruit traits in the F1 population. Note: Frequency is shown on the y-ordinate. a: distribution of single fruit weight; 

b: distribution of fruit diameter; c: distribution of fruit length; d: distribution of fruit core size; e: distribution of flesh firmness; f: 

distribution of soluble solid content; g: distribution of skin color; h: distribution of fruit glucose content; i: distribution of fruit sorbitol 

content; j: distribution of fruit malic acid content 
 

 
 

Fig. 2: Significant QTL for ten fruit traits identified on the genetic linkage map of ‘Red Clapp’s Favorite’×‘Mansoo’. Note: The marker 

and genetic position being shown on the left side and the distribution of the LOD value being shown on the right. The solid bars indicate 

the QTL identified on the linkage groups with the 99% confidence interval, while the thin lines represent the 95% confidence interval for 

eight fruit traits, with the exception of FMAC and FCS (FMAC confidence interval was set at the 96.5% and 93.6% levels, while those 

of FCS were set at the 94.1% and 90.0% levels. Abbreviations: single fruit weight (SFW), fruit diameter (FD), fruit length (FL), fruit 

core size (FCZ), flesh firmness (FF), soluble solid content (SSC), skin color (SC), fruit glucose content (FGC), fruit sorbitol content 

(FSC) and fruit malic acid content (FMAC) 
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trait. Xue et al. (2017) also reported a skin color QTL on LG 

5, using Asian pear populations. In order to determine 

whether the skin color QTL reported by Xue et al. (2017), 

Yao et al. (2017), and ourselves were in the same region, we 

analyzed the three QTL regions of the corresponding 

physical locations. We found that all three skin color QTL 

contained the scaffold97.0 sequence, suggesting that the 

three skin color QTL might be the same gene. 

Several QTL for sugar and organic acid content have 

been reported in apple and pear. Ma et al. (2016) discovered 

two QTL for fruit malic acid content on LGs 8 and 16, using 

191 F1 individuals. Furthermore, two QTL for fruit glucose 

content and fruit sorbitol content were detected on one 

region of LG 3, while one further QTL for fruit glucose 

content was identified on LG 4 in apple (Ma et al. 2016). In 

the current study, the QTL for fruit glucose content and fruit 

malic acid content were both located on LG 11, while one 

QTL related to fruit sorbitol content was identified on LG 3 

(Fig. 2). It has been reported that some homologous regions 

exist between chromosome 3 and chromosome 11 in apple 

and pear (Wu et al. 2013), suggesting that the QTL 

associated with fruit glucose content in the current study 

may be the same gene as that reported by Ma et al. (2016). 

Two QTL for flesh firmness were detected on LG 4 in 

the Japanese pear F1 population ‘Akiakari’×‘Taihaku’ 

(Yamamoto et al. 2014), while two pear QTL for flesh 

firmness were located at the top of LG 3 (Saeed et al. 2014). 

In this study, we also identified one QTL related to flesh 

firmness, albeit at the bottom of LG 3 (Fig. 2); it would be of 

interest to determine whether the QTL we detected was the 

same QTL as that reported by the other groups. In addition, 

one QTL for soluble solid content was located on LG 11 in 

the current study (Fig. 2), while the other groups reported 

QTL for this trait on LGs 5, 10, 14 (Wu et al. 2014), 2, 16 

(Saeed et al. 2014), 4 and 8 (Yamamoto et al., 2014). Soluble 

solid content QTL were also detected on LGs 2, 3, 6, 8, 9, 

10, 12, 13, 14, 15 and 16 in the map of apple (Liebhard et al. 

2003; Kenis et al. 2008; Potts et al. 2014; Kunihisa et al. 

2014; Guan et al. 2015). Interestingly, published studies on 

either apple or pear found that no soluble solid content QTL 

was located on LG 11, which conflicts with the finding of the 

current study. Possible reasons for this discrepancy might be 

due the: different cultivars were included in the different 

studies; the soluble solid content trait was strongly affected 

by the environment; and soluble solid content was a complex 

trait, involving various monosaccharides, organic acids, 

amino acids, polyphenols, soluble pectin, etc. 

 

Conclusion 
 

Ten QTL associations with ten fruit quality traits were 

detected. And the study obtained 56, 421, 139, 64, 59, 37 

and 66 candidate genes related to single fruit weight, skin 

color, fruit core size, fruit diameter, soluble solid content, 

fruit firmness and fruit length from the pear genome 

database, respectively. 
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